Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38686810

RESUMO

Genome-wide approaches have significantly advanced our knowledge of the repertoire of RNA-binding proteins (RBPs) that associate with cellular polyadenylated mRNAs within eukaryotic cells. Recent studies focusing on the RBP interactomes of viral mRNAs, notably SARS-Cov-2, have revealed both similarities and differences between the RBP profiles of viral and cellular mRNAs. However, the RBPome of influenza virus mRNAs remains unexplored. Herein, we identify RBPs that associate with the viral mRNA encoding the nucleoprotein (NP) of an influenza A virus. Focusing on TDP-43, we show that it binds several influenza mRNAs beyond the NP-mRNA, and that its depletion results in lower levels of viral mRNAs and proteins within infected cells, and a decreased yield of infectious viral particles. We provide evidence that the viral polymerase recruits TDP-43 onto viral mRNAs through a direct interaction with the disordered C-terminal domain of TDP-43. Notably, other RBPs found to be associated with influenza virus mRNAs also interact with the viral polymerase, which points to a role of the polymerase in orchestrating the assembly of viral messenger ribonucleoproteins.

2.
Nat Commun ; 15(1): 2810, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561347

RESUMO

Osteosarcoma is the most common primary malignant bone tumor with a strong tendency to metastasize, limiting the prognosis of affected patients. Genomic, epigenomic and transcriptomic analyses have demonstrated the exquisite molecular complexity of this tumor, but have not sufficiently defined the underlying mechanisms or identified promising therapeutic targets. To systematically explore RNA-protein interactions relevant to OS, we define the RNA interactomes together with the full proteome and the transcriptome of cells from five malignant bone tumors (four osteosarcomata and one malignant giant cell tumor of the bone) and from normal mesenchymal stem cells and osteoblasts. These analyses uncover both systematic changes of the RNA-binding activities of defined RNA-binding proteins common to all osteosarcomata and individual alterations that are observed in only a subset of tumors. Functional analyses reveal a particular vulnerability of these tumors to translation inhibition and a positive feedback loop involving the RBP IGF2BP3 and the transcription factor Myc which affects cellular translation and OS cell viability. Our results thus provide insight into potentially clinically relevant RNA-binding protein-dependent mechanisms of osteosarcoma.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Humanos , Proliferação de Células/genética , Linhagem Celular Tumoral , Osteossarcoma/metabolismo , Neoplasias Ósseas/metabolismo , RNA , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Regulação Neoplásica da Expressão Gênica
3.
Nat Commun ; 14(1): 2074, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-37045843

RESUMO

System-wide approaches have unveiled an unexpected breadth of the RNA-bound proteomes of cultured cells. Corresponding information regarding RNA-binding proteins (RBPs) of mammalian organs is still missing, largely due to technical challenges. Here, we describe ex vivo enhanced RNA interactome capture (eRIC) to characterize the RNA-bound proteomes of three different mouse organs. The resulting organ atlases encompass more than 1300 RBPs active in brain, kidney or liver. Nearly a quarter (291) of these had formerly not been identified in cultured cells, with more than 100 being metabolic enzymes. Remarkably, RBP activity differs between organs independent of RBP abundance, suggesting organ-specific levels of control. Similarly, we identify systematic differences in RNA binding between animal organs and cultured cells. The pervasive RNA binding of enzymes of intermediary metabolism in organs points to tightly knit connections between gene expression and metabolism, and displays a particular enrichment for enzymes that use nucleotide cofactors. We describe a generically applicable refinement of the eRIC technology and provide an instructive resource of RBPs active in intact mammalian organs, including the brain.


Assuntos
Proteoma , Proteínas de Ligação a RNA , Animais , Camundongos , Proteoma/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , RNA , Mamíferos/genética , Células Cultivadas
4.
Mol Cell ; 82(14): 2666-2680.e11, 2022 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-35709751

RESUMO

Differentiating stem cells must coordinate their metabolism and fate trajectories. Here, we report that the catalytic activity of the glycolytic enzyme Enolase 1 (ENO1) is directly regulated by RNAs leading to metabolic rewiring in mouse embryonic stem cells (mESCs). We identify RNA ligands that specifically inhibit ENO1's enzymatic activity in vitro and diminish glycolysis in cultured human cells and mESCs. Pharmacological inhibition or RNAi-mediated depletion of the protein deacetylase SIRT2 increases ENO1's acetylation and enhances its RNA binding. Similarly, induction of mESC differentiation leads to increased ENO1 acetylation, enhanced RNA binding, and inhibition of glycolysis. Stem cells expressing mutant forms of ENO1 that escape or hyper-activate this regulation display impaired germ layer differentiation. Our findings uncover acetylation-driven riboregulation of ENO1 as a physiological mechanism of glycolytic control and of the regulation of stem cell differentiation. Riboregulation may represent a more widespread principle of biological control.


Assuntos
Glicólise , Fosfopiruvato Hidratase , Animais , Diferenciação Celular , Células-Tronco Embrionárias/metabolismo , Glicólise/fisiologia , Humanos , Camundongos , Células-Tronco Embrionárias Murinas/metabolismo , Fosfopiruvato Hidratase/genética , Fosfopiruvato Hidratase/metabolismo , RNA/metabolismo
5.
Nat Protoc ; 16(1): 27-60, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33208978

RESUMO

Interactions between RNA-binding proteins (RBPs) and RNAs are critical to cell biology. However, methods to comprehensively and quantitatively assess these interactions within cells were lacking. RNA interactome capture (RIC) uses in vivo UV crosslinking, oligo(dT) capture, and proteomics to identify RNA-binding proteomes. Recent advances have empowered RIC to quantify RBP responses to biological cues such as metabolic imbalance or virus infection. Enhanced RIC exploits the stronger binding of locked nucleic acid (LNA)-containing oligo(dT) probes to poly(A) tails to maximize RNA capture selectivity and efficiency, profoundly improving signal-to-noise ratios. The subsequent analytical use of SILAC and TMT proteomic approaches, together with high-sensitivity sample preparation and tailored statistical data analysis, substantially improves RIC's quantitative accuracy and reproducibility. This optimized approach is an extension of the original RIC protocol. It takes 3 d plus 2 weeks for proteomics and data analysis and will enable the study of RBP dynamics under different physiological and pathological conditions.


Assuntos
Proteômica/métodos , Proteínas de Ligação a RNA/metabolismo , RNA/metabolismo , Humanos , Células Jurkat , Oligonucleotídeos/metabolismo , Ligação Proteica , Fluxo de Trabalho
6.
Nucleic Acids Res ; 48(9): 4725-4740, 2020 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-32313943

RESUMO

Cellular stress causes multifaceted reactions to trigger adaptive responses to environmental cues at all levels of the gene expression pathway. RNA-binding proteins (RBP) are key contributors to stress-induced regulation of RNA fate and function. Here, we uncover the plasticity of the RNA interactome in stressed cells, differentiating between responses in the nucleus and in the cytoplasm. We applied enhanced RNA interactome capture (eRIC) analysis preceded by nucleo-cytoplasmic fractionation following arsenite-induced oxidative stress. The data reveal unexpectedly compartmentalized RNA interactomes and their responses to stress, including differential responses of RBPs in the nucleus versus the cytoplasm, which would have been missed by whole cell analyses.


Assuntos
Núcleo Celular/metabolismo , Citoplasma/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Fracionamento Celular , Linhagem Celular Tumoral , Humanos , Estresse Oxidativo , Biossíntese de Proteínas , Estabilidade de RNA
7.
Nat Commun ; 9(1): 4408, 2018 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-30352994

RESUMO

Following the realization that eukaryotic RNA-binding proteomes are substantially larger than anticipated, we must now understand their detailed composition and dynamics. Methods such as RNA interactome capture (RIC) have begun to address this need. However, limitations of RIC have been reported. Here we describe enhanced RNA interactome capture (eRIC), a method based on the use of an LNA-modified capture probe, which yields numerous advantages including greater specificity and increased signal-to-noise ratios compared to existing methods. In Jurkat cells, eRIC reduces the rRNA and DNA contamination by >10-fold compared to RIC and increases the detection of RNA-binding proteins. Due to its low background, eRIC also empowers comparative analyses of changes of RNA-bound proteomes missed by RIC. For example, in cells treated with dimethyloxalylglycine, which inhibits RNA demethylases, eRIC identifies m6A-responsive RNA-binding proteins that escape RIC. eRIC will facilitate the unbiased characterization of RBP dynamics in response to biological and pharmacological cues.


Assuntos
Mapas de Interação de Proteínas , Proteínas de Ligação a RNA/metabolismo , RNA/metabolismo , Adenosina/análogos & derivados , Adenosina/metabolismo , Aminoácidos Dicarboxílicos/farmacologia , Genoma , Humanos , Células Jurkat , Poli A/metabolismo , Mapas de Interação de Proteínas/efeitos dos fármacos , RNA Ribossômico/metabolismo , Serina-Treonina Quinases TOR/metabolismo
8.
Cell Rep ; 16(1): 37-47, 2016 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-27320910

RESUMO

Hypoxia-inducible factors (HIFs) are critical regulators of the cellular response to hypoxia. Despite their established roles in normal physiology and numerous pathologies, the molecular mechanisms by which they control gene expression remain poorly understood. We report here a conserved role for the TIP60 complex as a HIF1 transcriptional cofactor in Drosophila and human cells. TIP60 (KAT5) is required for HIF1-dependent gene expression in fly cells and embryos and colorectal cancer cells. HIF1A interacts with and recruits TIP60 to chromatin. TIP60 is dispensable for HIF1A association with its target genes but is required for HIF1A-dependent chromatin modification and RNA polymerase II activation in hypoxia. In human cells, global analysis of HIF1A-dependent gene activity reveals that most HIF1A targets require either TIP60, the CDK8-Mediator complex, or both as coactivators for full expression in hypoxia. Thus, HIF1A employs functionally diverse cofactors to regulate different subsets of genes within its transcriptional program.


Assuntos
Sequência Conservada , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Histona Acetiltransferases/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Lisina Acetiltransferase 5/metabolismo , Acetilação , Animais , Cromatina/metabolismo , Quinase 8 Dependente de Ciclina/metabolismo , Drosophila melanogaster/genética , Células HCT116 , Células HEK293 , Histonas/metabolismo , Humanos , Ligação Proteica , Subunidades Proteicas/metabolismo , RNA Polimerase II/metabolismo , Transcrição Gênica , Ativação Transcricional
9.
Int J Mol Sci ; 12(7): 4705-21, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21845106

RESUMO

Reduction in oxygen levels below normal concentrations plays important roles in different normal and pathological conditions, such as development, tumorigenesis, chronic kidney disease and stroke. Organisms exposed to hypoxia trigger changes at both cellular and systemic levels to recover oxygen homeostasis. Most of these processes are mediated by Hypoxia Inducible Factors, HIFs, a family of transcription factors that directly induce the expression of several hundred genes in mammalian cells. Although different aspects of HIF regulation are well known, it is still unclear by which precise mechanism HIFs activate transcription of their target genes. Concomitantly, hypoxia provokes a dramatic decrease of general transcription that seems to rely in part on epigenetic changes through a poorly understood mechanism. In this review we discuss the current knowledge on chromatin changes involved in HIF dependent gene activation, as well as on other epigenetic changes, not necessarily linked to HIF that take place under hypoxic conditions.


Assuntos
Epigenômica , Hipóxia , Animais , Cromatina/metabolismo , Histona Acetiltransferases/química , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Histona Desacetilases/química , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Histonas/química , Histonas/metabolismo , Humanos
10.
PLoS Genet ; 6(6): e1000994, 2010 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-20585616

RESUMO

Hypoxia-inducible factors (HIFs) are a family of evolutionary conserved alpha-beta heterodimeric transcription factors that induce a wide range of genes in response to low oxygen tension. Molecular mechanisms that mediate oxygen-dependent HIF regulation operate at the level of the alpha subunit, controlling protein stability, subcellular localization, and transcriptional coactivator recruitment. We have conducted an unbiased genome-wide RNA interference (RNAi) screen in Drosophila cells aimed to the identification of genes required for HIF activity. After 3 rounds of selection, 30 genes emerged as critical HIF regulators in hypoxia, most of which had not been previously associated with HIF biology. The list of genes includes components of chromatin remodeling complexes, transcription elongation factors, and translational regulators. One remarkable hit was the argonaute 1 (ago1) gene, a central element of the microRNA (miRNA) translational silencing machinery. Further studies confirmed the physiological role of the miRNA machinery in HIF-dependent transcription. This study reveals the occurrence of novel mechanisms of HIF regulation, which might contribute to developing novel strategies for therapeutic intervention of HIF-related pathologies, including heart attack, cancer, and stroke.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Drosophila melanogaster/genética , Hipóxia/genética , Interferência de RNA , Transcrição Gênica , Animais , Proteínas Argonautas , Linhagem Celular , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Fatores de Iniciação em Eucariotos/genética , Estudo de Associação Genômica Ampla , Hipóxia/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA